
A Method of Finding Integral

Formulas which in certain Cases

have a given ratio, where at the

same time a method of summing

continued fractions is presented *

Leonhard Euler

§1 As in recurring series each term is determined from one or more prece-
ding terms according to a certain constant law, so I will consider series of such
a kind here, in which each term is determined from one or more preceding
ones according to a certain variable law. But since in such series the general
formula expressing each term is not algebraic in most cases but transcendal,
it will be convenient to exhibit each term by integral formulas; for them to
yield definite values, I assume that after the integration a definite value is
attributed to the variable quantity, such that each term results as a definite
quantity; and now the principal question reduces to of what nature these
integral formulas must be that each term is determined from one or more
preceding ones according to a given law.

§2 To see this more clearly, consider the well-known series of these integral
formulas

*Original title: "Methodus inveniendi formulas integrales, quae certis casibus datam inter
se teneant rationem, ubi sumul methodus traditur fractiones continuas summandi", first
published Opuscula Analytica 2, 1785, pp. 178-216, reprint in Opera Omnia: Series 1,
Volume 18, pp. 209 - 243, Eneström-Number 594, translated by: Alexander Aycock, for the
project „Euler-Kreis Mainz“.
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∫ dx√
1− xx

,
∫ xxdx√

1− xx
,

∫ x4dx√
1− xx

,
∫ x6dx√

1− xx
etc.;

if each one is integrated in such a way that it vanishes for x = 0, but then the
value 1 is attributed to the variable x, each term depends on the preceding
one in such a way that

∫ xxdx√
1− xx

=
1
2
∫ dx√

1− xx
,

∫ x4dx√
1− xx

=
3
4
∫ xxdx√

1− xx
,

∫ x6dx√
1− xx

=
5
6
∫ x8dx√

1− xx
and in general ∫ xndx√

1− xx
=

n− 1
n

∫ xn−2dx√
1− xx

.

Hence it is plain that this general formula can be considered as general term
of that series and each term results from the preceding one, if that one is
multiplied by n−1

n .

§3 Hence similarly let us in general constitute a series of integral formulas∫
dv,

∫
xdv,

∫
xxdv,

∫
x3dv,

∫
x4dv etc.,

such that the term corresponding to the index n is∫
xn−1dv,

which integrals we want to assume to be taken in such a way that they vanish
for x = 0; but after the integration, let us attribute a certain constant value
to the variable x, e.g., x = 1 or any other number. Having constituted these
things, the question reduces to how the function v of x must be chosen that
each term is determined by one or two or more preceding terms according to
a certain law; here one has to pay special attention to how many dimensions
the index n rises in the propounded scale of relation; but in most cases in will
not be necessary to go higher than the first dimension. Therefore, hence we
will solve following problems.
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PROBLEM 1

§4 To find a function v that this relation among two subsequent terms holds∫
xndv =

αn + a
βn + b

∫
xn−1dv.

SOLUTION

Therefore, it is required here that

(αn + a)
∫

xn−1dv = (βn + b)
∫

xndv,

if a certain value is attributed to the variable x after the integration, of course.
Therefore, since that condition can only hold, after that constant value was
attributed to the variable x, let us put in general, while x is variable, that this
equation holds

(αn + a)
∫

xn−1dv = (βn + b)
∫

xndv + V,

but the quantity V is of such a nature that it vanishes after that definite value
has been assigned to the variable. Furthermore, since both integrals must be
taken is such a way that they vanish for x = 0, it is necessary that also this
quantity V vanishes in the same case.

§5 Since this equality must hold for all indices n, which we certainly always
consider to be positive, it is easily understood that that quantity V must have
the factor xn; after this, that condition is already satisfied that for x = 0 also
V becomes = 0. Therefore, let us set

V = xnQ,

where Q denotes a suitable function of x, and which we at the same time
desire to be of such a nature that it vanishes, if a certain value is attributed to
x.

§6 Therefore, since it must be

(αn + a)
∫

xn−1dv = (βn + b)
∫

xndv + xnQ,
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differentiate this equation and, having divided the differential by xn−1, one
will get to this differential equation

(αn + a)dv = (βn + b)xdv + nQdx + xdQ;

since this must hold for all values of n, the terms affected with that letter must
cancel each other, whence we obtain these to equations

I. (α− βx)dv = Qdx and II. (a− bx)dv = xdQ.

From the first dv = Qdx
α−βx , from the other dv = xdQ

a−bx , which two values set

equal to each other yield this equation dQ
Q = dx

x ·
a−bx
α−βx , which equation is

resolved into these parts

dQ
Q

=
a
α
· dx

x
+

aβ− bα

α
· dx

α− βx
,

whose integral will therefore be

log Q =
a
α

log x− aβ− bα

αβ
log(α− βx),

whence one deduces

Q = Cx
a
α (α− βx)

bα−aβ
αβ .

§7 From this value found for Q it is immediately clear that it it vanishes
in the case x = α

β , if just bα−aβ
αβ > 0; but if this is not the case, then it is not

clear how this quantity can vanish in any case. But having found this value Q,
hence one will also find

dv = Cx
a
α dx(α− βx)

bα−aβ
αβ −1

and hence the term corresponding to the index n of our series will be∫
xn−1dv = C

∫
xn+ a

α−1dx(α− βx)
bα−aβ

αβ −1,

but then it will be

V = Cxn+ a
α (α− βx)

bα−aβ
αβ .

Here matters especially reduce to this that that quantity, aside from the case
x = 0, additionally vanishes in another case.
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COROLLARY 1

§8 Here, two cases occur, which require a peculiar expansion; the first, in
which α = 0; but then one has to start from the equation dQ

Q = − (α−bx)dx
βxx ,

whence, by integration, one finds log Q = a
βx + b

β log x, and hence, taking e
for the number whose hyperbolic logarithm is = 1, one concludes

Q = e
a

βx x
b
β ,

which formula can only vanish if a
βx = −∞ and hence x = 0, and so one

would not have two cases in which V = 0, although nevertheless two are
required. But aside from this it it will be

dv =
e

a
βx x

b
β dx

−βx
.

COROLLARY 2

§9 The other case requiring a peculiar expansion will be β = 0; but then
it will be dQ

Q = dx(a−bx)
αx , whence log Q = a

α log x− bx
α and hence Q = x

a
α e
−bx

α ,
which formula vanishes in the case x = ∞, if just b

α was a positive number;
but if b

α was a negative number, then Q vanishes in the case x = −∞. Further,
in this case it will be

dv =
x

a
α e
−bx

α dx
α

.

SCHOLIUM

§9a Having observed these things in general, let us expand several special
cases, in which we attribute certain values, which lead to already known cases,
to the letters α, β and a, b.

EXAMPLE 1

§9b Let integral formulas be in question that∫
xndv =

2n− 1
2n

∫
xn−1dv.
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Therefore, since here it must be (2n− 1)
∫

xn−1dv = 2n
∫

xndv, in this case
it will be α = 2 and a = −1, but then β = 2 and b = 0; hence

dQ
Q

= − dx
2x(1− x)

= −dx
2x
− dx

2(1− x)
,

thus, by integration

log Q = −1
2

log x +
1
2

log(1− x)

and hence

Q = C

√
1− x

x
, therefore, V = Cxn

√
1− x

x
.

Further, since here dv = Qdx
2(1−x) , it will be

dv =
Cdx

√
1−x

x

2(1− x)
=

Cdx
2
√

x− xx
;

therefore, having taken C = 2 it will be dv = dx√
x−xx and our general formula

∫
xn−1dv =

∫ xn−1dx√
x− xx

;

hence, since V = xn
√

1−x
x , this quantity obviously vanishes for x = 1 such that

our formula, if one sets x = 1 after the integration, meets the requirements.
Therefore, if we put x = yy, that formula will take this form

2
∫ y2n−2dy√

1− yy
,

which, having put y = 1 after the integration, yields this relation∫ y2ndy√
1− yy

=
2n− 1

2n

∫ y2n−2dy√
1− yy

,

which contains the relations mentioned above (§ 2); for, hence it will be
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∫ yydy√
1− yy

=
1
2
∫ dy√

1− yy
,

∫ y4dy√
1− yy

=
3
4
∫ yydy√

1− yy

and∫ y6dy√
1− yy

=
5
6
∫ y4dy√

1− yy
.

EXAMPLE 2

§10 Let integral formulas be in question that∫
xndv =

αn− 1
αn

∫
xn−1dv.

Therefore, since here it must be (αn− 1)
∫

xn−1dv = αn
∫

xndv, in this case
it will be a = −1, β = α and b = 0, whence by the formulas given above one
concludes

Q = Cx
−1
α (α− αx)

−a
α = Cx

−1
α (1− x)

+1
α ,

which quantity obviously vanishes for x = 1. But then it will be

dv =
x
−1
α (1− x)

+1
α dx

1− x
,

whence our general formula will be

∫
xn−1dv =

∫
xx− 1

α−1(1− x)+
1
α−1dx =

∫ xn− 1
α−1dx

(1− x)1− 1
α

,

which can be simplified by setting x = yα; for, then it will take this form∫ yαn−2dy

(1− yα)
α−1

α

,

where again after the integration one must set y = 1. Hence it will be∫ yαn+α−2dy

(1− yα)
α−1

α

=
αn− 1

αn

∫ yαn−2dy

(1− yα)
α−1

α
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and hence the following special cases will result∫ y2α−2dy

(1− yα)
α−1

α

=
α− 1

α

∫ yα−2dy

(1− yα)
α−1

α

and ∫ y3α−2dy

(1− yα)
α−1

α

=
2α− 1

2α

∫ y2α−2dy

(1− yα)
α−1

α

.

§11 Therefore, if one takes α = 1 that it has to be∫
xndv =

n− 1
n

∫
xn−1dv,

our general formula now, already expressed in y, will be
∫

yn−2dy, whose
value therefore is 1

n−1 yn−1 = 1
n−1 , whence the whole series of our integral

formulas will go over into this one

1
0

,
1
1

,
1
2

,
1
3

,
1
4

,
1
5

,
1
6

,
1
7

etc.

§12 Let us also take α = 1
2 and now it will not necessary anymore to proceed

to y. Therefore, in this case it will be

Q =
(1− x)2

xx
and dv =

(1− x)dx
xx

,

whence our general formula becomes∫
xn−1dv =

∫
xn−3(1− x)dx,

whose value expressed algebraically will therefore be

1
n− 2

xn−2 − 1
n− 1

xn−1 =
1

(n− 1)(n− 2)
,

whence the series of our formulas will become

1
0 · (−1)

,
1

0 · 1,
1

1 · 2,
1

2 · 3,
1

3 · 4,
1

4 · 5 etc.
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EXAMPLE 3

§13 Let integral formulas be in question such that∫
xndv = n

∫
xn−1dv.

Therefore, since it must be n
∫

xn−1dv = 1
∫

xndv, it will be α = 1, a = 0,
b = 1, β = 0. Therefore, since β = 0, the case of Corollary 2 applies here and
hence it will be Q = e−x and hence V = e−xxn, which quantity vanishes in
the two cases x = 0 and x = ∞. Further, it will be dv = e−xdx and hence our
general formula will become

∫
xn−1dxe−x, whence first the terms of the series

will look as follows:∫
e−xdx,

∫
e−xxdx,

∫
e−xxxdx,

∫
e−xx3dx etc.,

having integrated which in such a way that they vanish for x = 0, then, having
put x = ∞, the following rather simple series will result

1, 1, 1 · 2, 1 · 2 · 3, 1 · 2 · 3 · 4, 1 · 2 · 3 · 4 · 5 etc.,

which is the Wallisian hypergeometric series, whose general term hence is∫
xn−1e−xdx = 1 · 2 · 3 · 4 · · · (n− 1).

§14 Therefore, by means of this general term it is possible to interpolate this
series. So, if one wants to find the middle term between the first two, one
must set n = 3

2 and the value of this terms will be
∫

e−xdx
√

x, whose value
cannot be expressed algebraically by any means. But, using a singular method,
I found that this term is equal to 1

2
√

π, while π denotes the circumference
of the circle whose diameter is = 1, whence here vice versa we see that∫

e−xdx
√

x =
√

π
2 , having put x = ∞ after the integration, of course. But the

term preceding this one corresponding to he index 1
2 will be =

√
π, which is

therefore equal to the formula
∫ e−xdx√

x . Hence if we put ex = y here so that for
x = 0 we have y = 1, but for x = ∞ we have y = ∞, then that integral formula∫ e−xdx√

x goes over into this one
∫ dy

yy
√

log y
, which formula, if integrated in such

a way that it vanishes for y = 1 but then one puts y = ∞, yields the value of√
π. Further, if y = 1

z , the limits of integration will be z = 1 and z = 0 and the
integral formula will be
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−
∫ dz√

− log z

[
from z = 1
to z = 0

]
=
√

π

or, having interchanged the limits of integration,∫ dz√
− log z

[
from z = 0
to z = 1

]
=
√

π,

as I already noted some time ago.

EXAMPLE 4

§15 Let integral formulas be in question that∫
xndv =

1
n

∫
xn−1dv or

∫
xn−1dv = n

∫
xndv.

Here it is α = 0 and a = 1, β = 1 and b = 0; therefore, this is the case
treated in Corollary 1, whence it is concluded that it will be Q = e

1
x and hence

V = xne
1
x , which formula does not even vanish for x = 0, since the formula e

1
0

is equivalent to the infinity of an infinitesimal power. But here it miraculously
happens that the case x = −0 renders the formula e

−1
0 vanishing. Of course,

if ω denotes an infinitely small quantity, it will be e
1
ω = ∞∞, but then on the

other hand it will be e
−1
ω = 1

∞∞ = 0, whence we cannot exhibit a formula for
our purpose here. One will certainly find dv = −e

1
x dx

x so that our general
formula is −

∫
xn−2dxe

1
x , which is not useful for us.

§16 Therefore, if we put 1
x = y, that integral formula goes over into this one

+
∫ eydy

yn . But now it will be V = ey

yn , which formula vanishes for y = −∞. But
no matter how we transform this expression, the same inconvenience will
always occur. But this case can be resolved as follows. For, let the first term of
the series we are looking for be = ω, from which according to the prescribed
rule the subsequent terms proceed this way

1 2 3 4 5 n

ω,
ω

1
,

ω

1 · 2,
ω

1 · 2 · 3,
ω

1 · 2 · 3 · 4 · · · ω

1 · 2 · 3 · · · (n− 1)
.
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But above we saw that the value of this formula 1 · 2 · 3 · 4 · 5 · · · (n− 1) is
expressed by this integral

∫
xn−1e−xdx having extended the integration from

x = 0 to x = ∞; therefore, it is just necessary that the transfer this integral
formula to the denominator, and the general term of the series we are trying
to find will be

1∫
xn−1e−xdx

,

whence is clearly seen that the task can not be solved by a simple integral
formulas, what is also to be noted on the other cases, in which the quantity V
can not vanish in two cases; for, then it is just necessary to invert the fraction
αn+a
βn+b and to transfer the integral formula to the denominator.

SCHOLIUM

§17 If not α = 0 or β = 0, which cases we already covered, the resolution of
our problem can always be reduced to the case in which both letters α and β

are equal to one. For, since it must be∫
xndv =

αn + a
βn + b

∫
xn−1dv,

put x = αy
β and it will be

α

β

∫
yndv =

αn + a
βn + b

∫
yn−1dv,

which equation is reduced to this form∫
yndv =

n + a : α

n + b : β

∫
yn−1dv.

If we now write a instead of a
α and b instead of b

β , this formula must be
resolved ∫

yndv =
n + a
n + b

∫
yn−1dv,

whose resolution, if we write y instead of x and one instead of α and β, from
the above solution first yields

Q = Cya(1− y)b−a,
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which therefore vanishes for y = 1, if just b > a; but then the formula itself
will be ∫

yn−1dv = C
∫

yn+a−1dy(1− y)b−a−1;

but if b < a, this solution, as we saw, cannot hold; but in this case one has to
assume this form 1∫

yn−1dv for the term of our series, such that then it must be

1∫
yndv

=
n + a
n + b

· 1∫
yn−1dv

or ∫
yndv =

n + b
n + a

∫
yn−1dv,

whose resolution having permuted the letters a and b yields

Q = Cyb(1− y)a−b,

which now vanishes in the case y = 1, if a > b; and then the general formula
will be ∫

yn−1dv = C
∫

yn+b−1dy(1− y)a−b−1.

Therefore, whether it is b > a or a > b, the solution has no difficulty anymore.

§18 But if it was either α = 0 or β = 0, one can write 1 instead of the other;
hence, if it must be ∫

xndv =
n + a

b

∫
xn−1dv,

because of α = 1 and β = 0 our general solution gives

dQ
Q

=
dx
x
(a− bx),

whence one concludes Q = Cxae−bx, which formula vanishes for x = ∞, if
just b was a positive; but then the general term becomes∫

xn−1dv = C
∫

xn+a−1dxe−bx.

But on the other hand the number b cannot be negative, since otherwise the
prescribed condition would not be met.
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§19 Let us also consider the other case in which α = 0 and β = 1 and hence
the prescribed condition ∫

xndv =
a

n + b

∫
xn−1dv,

whence

dQ
Q

= −dx
xx

(a− bx).

But hence for Q a value would result which, aside from the case x = 0, could
not vanish; therefore, the general formula must be set 1∫

xn−1dv such that it
must be ∫

xndv =
n + b

a

∫
xn−1dv,

whence

dQ
Q

=
dx
x
(b− ax) and hence Q = Ce−axxb,

which expression vanishes for x = ∞, since a must necessarily be a positive
number; but then it will be

dv = Ce−axxbdx,

whence the general formula of the series will be

1
C
∫

xn+b−1dxe−ax .

PROBLEM 2

§20 Let T denote the term corresponding to the index n in the series which we intend
to consider, but let T′ denote the following term and let this condition be propounded
to be satisfied

T′ =
(αn + a)(α′n + a′)
(βn + b)(β′n + b′)

T.
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SOLUTION

Since here two values occur, this condition is satisfied in the most convenient
manner, if the general term T is considered as the product of two factors.
Therefore, set T = RS and let the following term be = R′S′ and find the
formulas R and S such that

R′ =
αn + a
βn + b

R and S′ =
α′n + a′

β′n + b
S;

for, then taking T = RS the prescribed condition will obviously be satisfied.
Therefore, this way one will find formulas of the kind

∫
xn−1dv or inverse

ones for R and S, what suffices for the general solution, whence we want to
illustrate this in an example.

EXAMPLE

§21 Let the general formula T be in question such that

T′ =
nn− cc

nn
T.

Therefore, let us resolve T into two factors R and S and set

R′ =
n− c

n
R and S′ =

n + c
n

S.

If we set R =
∫

xn−1dv for the first formula, from the general solution, where
it will be α = 1, a = −c, β = 1 and b = 0, it will be

Q = Cx−c(1− x)c,

which form obviously vanishes for x = 1; and hence, since

V = Cxn−c(1− x)c,

this form also vanishes in the case x = 0, if just n > c, which can be assumed
without worries, since we assumed the exponent n to grow to infinity and
mostly just fractions are taken for c. Therefore, hence it will be

R = C
∫

xn−c−1(1− x)c−1dx.
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§22 Hence one could already deduce the other value of the letter S, writing
just −c instead of c, but then it would not further be Q = 0 for x = 1, whence
one has to assume the inverse formula 1∫

xn−1dv for the formula S, that it has to
be ∫

xndv =
n

n + c

∫
xn−1dv;

since here α = 1, a = 0, β = 1 and b = c, one finds

Q = C(1− x)c,

which form is obviously = 0 for x = 1; but hence it results

dv = C(1− x)c−1dx,

therefore, we will have

S =
1

C
∫

xn−1(1− x)c−1dx
;

consequently, our general formula in question will be

T =

∫
xn−c−1(1− x)c−1dx∫
xn−1(1− x)c−1dx

.

§23 Therefore, if we put the first term of our series proceeding through
factors = A, the series itself will be

1 2 3 4

A,
1− cc

1
A,

1− cc
1
· 4− cc

4
A,

1− cc
1
· 4− cc

4
· 9− cc

9
A etc.

hence, if we take c = 1
2 , the series will be

A,
1 · 3
2 · 3 A,

1 · 3
2 · 2 ·

3 · 5
4 · 4 A,

1 · 3
2 · 2 ·

3 · 5
4 · 4 ·

5 · 7
6 · 6 A etc.;

whose term corresponding to the index n therefore is∫
xn− 3

2 (1− x)−
1
2 dx∫

xn−1(1− x)−
1
2 dx

,
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which for x = yy goes over into this form∫
y2n−2(1− yy)−

1
2 dy∫

y2n−1(1− yy)−
1
2 dy

,

whence it is plain that the first term will be

A =
∫ dy√

1− yy
:
∫ ydy√

1− yy
=

π

2
,

having put y = 1 after the integration, of course.

PROBLEM 3

§24 Let T denote the term corresponding to index n of the series and let T′ and T′′

be the following terms for the indices n + 1 and n + 2; if among three subsequent
terms such a relation is propounded that

(αn + a)T = (βn + b)T′ + (γn + c)T′′,

to investigate the formula for T, by which the general term of this series is expressed.

SOLUTION

Assume the integral formula
∫

xn−1dv for T and take the integral in such a
way that it vanishes for x = 0, and the following term will be T′ =

∫
xndv

and T′′ =
∫

xn+1dv, if a definite value is attributed to the variable x after the
integration, of course. But as long as this quantity x is considered as a variable,
let us put that

(αn + a)T = (βn + b)T′ + (γn + c)T′′ + xnQ

and it is perspicuous that Q must be a function of x of such a kind which
vanishes, of that definite value is substituted for x, which must be different
from zero, since we already assumed that all these formulas vanish for x = 0.
But if after the calculation this condition cannot be satisfied by any means,
this will be an indication that our problem cannot be solved this way, i.e. that
its general term T is exhibited by such a simple differential formula

∫
xn−1dv.
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§25 Now let us differentiate the equation just constituted and, having done
the division by xn−1, the following equation will result

(αn + a)dv = (βn + b)xdv + (γn + c)xxdv + nQdx + xdQ,

which, since the terms affected by the letter n must cancel each other, is split
into the following two equations

1. αdv = βxdv + γxxdv + Qdx,

2. adv = bxdv + cxxdv + xdQ,

from the first of which

dv =
Qdx

α− βx− γxx
,

from the other

dv =
xdQ

a− bx− cxx
,

the second of which values divided by the first yields

dQ
Q

=
dx(a− bx− cxx)
x(α− βx− γxx)

,

from which integration the value of Q must be found, having done which it
will be seen clearly whether it can vanish in a certain case, aside from x = 0.
But here it is especially to be noted, if this integral involves a factor of the
kind e

λ
x , that then the solution will also not succeed, since for x = 0 that factor

will only involve a power of infinity, that, even though it is multiplied by xn,
the product still remains infinite.

§26 Therefore, if those prescribed conditions could be satisfied, then, having
found the value of the letter Q, which we put to become = 0 for x = f , one
will have

dv =
Qdx

α− βx− γxx

and the general formula containing the nature of the series will be
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T =
∫

xn−1dv =
∫ xn−1Qdx

α− βx− γxx
,

whose integral extended from x = 0 to x = f will yield the value of the term
T corresponding to the index n.

SCHOLIUM

§27 But having found such a relation among three subsequent terms of a
series, one can in usual manner form a continued fraction, whose value can
be assigned. For, if the characters

T′, T′′, T′′′, T′′′′ etc.

denote the terms following after T to infinity, from the relations among them
the following formulas will be deduced. From the relation

(αn + a)T = (βn + b)T′ + (γn + c)T′′

one deduces

(αn + a)
T
T′

= βn + b +
(γn + c)(αn + α + a)
(αn + α + a)T′ : T′′

.

From the following relation

(αn + α + a)T′ = (βn + β + b)T′′ + (γn + γ + c)T′′′

one deduces

(αn + α + a)
T′

T′′
= βn + β + b +

(γn + γ + c)(αn + 2α + a)
(αn + 2α + a)T′′ : T′′′

.

In like manner, the following relations will give

(αn + 2α + a)
T′′

T′′′
= βn + 2β + b

(γn + 2γ + c)(αn + 3α + a)
(αn + 3α + a)T′′′ : T′′′′

,

(αn + 3α + a)
T′′′

T′′′′
= βn + 3β + b

(γn + 3γ + c)(αn + 4α + a)
(αn + 4α + a)T′′′′ : T′′′′′

;

hence it is manifest, if in the first formula one continuously substitutes the
following values in order, that a continued fraction will result, whose value
will be equal to the formula (αn + a) T

T′ .
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§28 Therefore, if we write the numbers 1, 2, 3, 4 etc. instead of n, we will be
able to solve the following problems on continued fractions.

PROBLEM 4

Having propounded a continued fraction of this form

β + b +
(γ + c)(2α + a)

2β + b +
(2γ + c)(3α + a)

3β + b +
(3γ + c)(4α + a)

4β + b +
(4γ + c)(5α + a)

5β + b +
(5γ + c)(6α + a)

6β + b + etc.

,

to assign its value.

SOLUTION

Consider that relation among three subsequent quantities T, T′, T′′ in general,
which is

(αn + a)T = (βn + b)T′ + (γn + c)T′′,

and from the preceding problem find the value of T, if it is possible, of course,
expressed in this way

T =
∫

xn−1dv =
∫ xn−1Qdx

α− βx− γxx
,

whose integral is to be extended from x = 0 to x = f ; having found this form,
put ∫ Qdx

α− βx− γxx
= A and

∫ xQdx
α− βx− γxx

= B,

such that A and B are the values of T for the cases n = 1 and n = 2; having
determined them, by the preceding results the value of the propounded
continued fraction will be = (α+a)A

B . Therefore, let us apply this investigation
to the following examples.
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EXAMPLE 1

§29 To investigate the value of the famous continued fraction once given by Broun-
cker for the quadrature of the circle, which reads

2 +
1 · 1

2 +
3 · 3

2 +
5 · 5

2 + etc.
Since all integer parts are constant and = 2, for our general formula it will

be

β + b = 2, 2β + b = 2, 3β + b = 2 etc.;

therefore, it will be β = 0 and b = 2; but for the numerators of the following
simple fractions, since they consist of two factors, for the first factors it will be

γ + c = 1, 2γ + c = 3, 3γ + c = 5, 4γ + c = 7 etc.,

whence one concludes γ = 2 and c = −1, for the others on the other hand it
will be

2α + a = 1, 3α + a = 3, 4α + a = 5 etc.,

whence α = 2 and a = −3. But from these values we conclude this equation

dQ
Q

= −dx(3 + 2x− xx)
2x(1− xx)

,

which, having cancelled 1 + x, yields

dQ
Q

= −dx(3− x)
2x(1− x)

,

whence by integration

log Q = −3
2

log x + log(1− x) and hence Q =
1− x

x
3
2

,

from which value it further follows
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A =
∫ (1− x)dx

2x
3
2 (1− xx)

=
∫ dx

2x(1 + x)
√

x
,

B =
∫ (1− x)dx

2x
1
2 (1− xx)

=
∫ dx

2(1 + x)
√

x
.

§30 But in these formula one detects that inconvenience that that first integral
cannot be rendered vanishing for x = 0. But this inconvenience can easily be
removed, if we truncate the continued fraction by its first term and find the
value of this continued fraction

2 +
3 · 3

2 +
5 · 5

2 + etc.;

if it was found to be = s, the value of the propounded fraction will be = b + 1
s .

But now, after having made the comparison, as before we have β = 0 and
b = 2, but then γ = 2 and c = +1, α = 2 and a = −1, whence it follows

dQ
Q

= −dx(1 + 2x + xx)
2x(1− xx)

= −dx(1 + x)
2x(1− x)

,

whence by integration

log Q = −1
2

log x + log(1− x) and hence Q =
1− x√

x
,

from which value we will now have

A =
∫

(1− x)dx
2(1− xx)

√
x
=

1
2

∫ dx
(1 + x)

√
x

and

B =
1
2

∫ dx
√

x
1 + x

;

here, since Q = 1−x√
x , its value obviously vanishes for x = 1, whence those

integrals are to be extended from the limit x = 0 to the limit x = 1.
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§31 Now to find these integrals more easily, let us set x = zz, such that the
limits of integrations are still z = 0 and z = 1, and it will be

A =
∫ dz

1 + zz
= arctan z =

π

4
and

B =
∫ zzdz

1 + zz
= 1− π

4
and so we will have s = π

4−π , whence the value of the Brounckerian continued
fraction is 1 + 4

π , precisely as Brouncker had already found it.

EXAMPLE 2

§31a To investigate the value of this generalised Brounckerian continued fraction

b +
1 · 1

b +
3 · 3

b +
5 · 5

b + etc.
To avoid the above inconvenience, let us omit the first term and find

s = b +
3 · 3

b +
5 · 5

b + etc.,

since then the value in question will be = b + 1
s . Therefore, it will now be

β = 0 and b = b, γ = 2, c = 1, α2 and a = −1, whence

dQ
Q

= −dx(1 + bx + xx)
2x(1− xx)

and thus,

log Q = −1
2

log x− b− 2
4

log(1 + x) +
b + 2

4
log(1− x)

and hence

Q =
(1− x)

b+2
4

(1 + x)
b−2

4
√

x
,
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which formula obviously becomes = 0 by putting x = 1, if b+ 2 was a positive
number, of course, whence

dv =
(1− x)

b−2
4 dx

2(1 + x)
b+2

4
√

x
.

But hence one will conclude

A =
1
2

∫
(1− x)

b−2
4 dx

(1 + x)
b+2

4
and B =

1
2

∫
(1− x)

b−2
4 dx
√

x

(1 + x)
b+2

4

or, putting x = zz, we will have

A =
∫

(1− zz)
b−2

4 dz

(1 + zz)
b+2

4
and B =

∫
(1− zz)

b−2
4 zzdz

(1 + zz)
b+2

4
,

which both integrals are to be extended from z = 0 to z = 1. But from these
values A and B it will be s = A

B ; therefore, the value of the propounded
continued fraction will be = b + 1

s = b + B
A .

§32 Therefore, if one puts b = 2 here, the case explained before depending
on the quadrature of the circle results, in which case the integral formula
becomes even rational. But whenever the exponents b−2

4 and b+2
4 are not

integer numbers, then the letters A and B can be expressed neither in terms
of circular arcs nor in terms of logarithms. As if was b = 4, it will be

A =
∫ dz

√
1− zz

(1 + zz)
3
2

,

whose value could be exhibited via elliptical arcs. But if b was an odd number,
these values become a lot more transcendental, such that we have to be content
with these letters A and B. But otherwise, if those exponents become integer
numbers, the whole task can be completed by circular arcs.

§33 But those exponents b−2
4 and b+2

4 will be integer numbers, if b was a
number of the form

b = 4i + 2;

for, then it will be
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A =
∫

(1− zz)idz
(1 + zz)i+1 and B =

∫
(1− zz)izzdz
(1 + zz)i+1 ;

therefore, it will be worth one’s while to teach how these cases must be
expanded, since already Wallis contemplated them.

§34 Since here this whole task reduces to the reduction of integral formulas
of this kind to simpler ones, let us in general consider the form P = zm

(1+zz)n ,
whose differential can be exhibited in the following form

1. dP =
mzm−1dz
(1 + zz)n −

2nzm+1dz
(1 + zz)n+1 ,

2. dP =
mzm−1dz

(1 + zz)n+1 −
(2n−m)zm+1dz
(1 + zz)n+1 ,

3. dP = − (2n−m)zm−1dz
(1 + zz)n +

2nzm−1dz
(1 + zz)n+1 ,

whence we deduce these three reductions of integrals

I.
∫ zm+1dz
(1 + zz)n+1 =

m
2n
∫ zm−1dz
(1 + zz)n −

1
2n
· zm

(1 + zz)n ,

II.
∫ zm+1dz
(1 + zz)n+1 =

m
2n−m

∫ zm−1dz
(1 + zz)n+1 −

1
2n−m

· zm

(1 + zz)n ,

III.
∫ zm−1dz
(1 + zz)n+1 =

2n−m
2n

∫ zm−1dz
(1 + zz)n +

1
2n
· zm

(1 + zz)n ,

by means of which reductions the task can be completed in the cases b = 4i+ 2
and can be reduced to the formula π

4 , if one takes z = 1 after the integration,
of course.

§35 Let i = 1 and hence b = 6 and it will be

A =
∫

(1− zz)dz
(1 + zz)2 and B =

∫
(1− zz)zzdz
(1 + zz)2 .

Therefore, by the third reduction we will now find
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∫ dz
(1 + zz)2 =

1
2

∫ dz
1 + zz

+
1
2
· z

1 + zz
=

π

8
+

1
4

and by the first reduction∫ zzdz
(1 + zz)2 =

1
2

∫ dz
1 + zz

− 1
2
· z

1 + zz
=

π

8
− 1

4
,

further,

∫ z4dz
(1 + zz)2 =

3
2

∫ zzdz
1 + zz

− 1
2
· z3

1 + zz
=

5
4
− 3π

8
.

From these values one now concludes A = 1
2 and B = π

2 −
3
2 and hence

B
A = π − 3, whence these summation will arise

3 + π = 6 +
1 · 1

6 +
3 · 3

6 +
5 · 5

6 +
7 · 7

6 + etc.

§36 Now let i = 2 and b = 10 and it will be

A =
∫

(1− zz)2dz
(1 + zz)3 and B =

∫ zz(1− zz)2dz
(1 + zz)3 .

To investigate the values of these integrals, let us expand the following formu-
las

∫ dz
(1 + zz)3 =

3
4
∫ dz
(1 + zz)2 +

1
4
· z
(1 + zz)2 =

3π

32
+

1
4

,

∫ zzdz
(1 + zz)3 =

1
4
∫ dz
(1 + zz)2 −

1
4
· z
(1 + zz)2 =

π

32
,

∫ z4dz
(1 + zz)3 =

3
4
∫ zzdz
(1 + zz)2 −

1
4
· z3

(1 + zz)2 =
3π

32
− 1

4
,

∫ z6dz
(1 + zz)3 =

5
4
∫ z4dz
(1 + zz)2 −

1
4
· z5

(1 + zz)2 =
3
2
− 15π

32
.
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From these values one now deduces A = π
8 and B = 2 − 5π

8 and hence
B
A = 16−5π

π , whence the following summation emerges

5π + 16
π

= 10 +
1 · 1

10 +
3 · 3

10 +
5 · 5

10 + etc.

§37 If b would be a negative number, the investigation would not bear any
further difficulty. For, if in general

s = −a +
α

−b +
β

−b +
γ

−c +
δ

−e + etc.

,

it will always be

−s = a +
α

b +
β

c +
γ

d +
δ

e + etc.

,

whence, if one has the value of this expression, the same taken negatively will
give the value of that one.

EXAMPLE 3

§38 Let this continued fraction, whose value is to be investigated, be propounded

1 +
1 · 1

3 +
3 · 3

5 +
5 · 5

7 +
7 · 7

9 + etc.
To apply the continued fractions mentioned above [§ 28], having omitted

the first term, let
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s = 3 +
3 · 3

5 +
5 · 5

7 +
7 · 7

9 + etc.
and it will be β + b = 3, 2β + b = 5 and hence β = 2 and b = 1, then, as
before, α = 2, a = −1, γ = 2 and c = +1; but having found s the value in
question will be = 1 + 1

s . Therefore, we will now have

dQ
Q

= −dx(1 + x + xx)
2x(1− x− xx)

.

But on the other hand

1 + x + xx
x(1− x− xx)

=
1
x
+

2 + 2x
1− x− xx

,

whence

log Q = −1
2

log x−
∫ dx(1 + x)

1− x− xx
.

Further, for find the formula
∫ dx(1+x)

1−x−xx , let us set the denominator

1− x− xx = (1− f x)(1− gx)

and it will be f + g = 1 and f g = −1, whence

f =
1 +
√

5
2

and g =
1−
√

5
2

.

Now set

1 + x
1− x− xx

=
A

1− f x
+

B

1− gx
,

whence one will find

A =
1 + f
f − g

and B = − 1 + g
f − g

,

or, having substituted the values given above for f and g, it will be

A =

√
5 + 3

2
√

5
and B =

√
5− 3

2
√

5
,
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having found which it will be∫ dx(1 + x)
1− x− xx

= −A

f
log(1− f x)− B

g
log(1− gx)

= −1 +
√

5
2
√

5
log(1− f x)−

√
5− 1

2
√

5
log(1− gx),

whence it will be

log Q = −1
2

log x +

√
5 + 1

2
√

5
log(1− f x) +

√
5− 1

2
√

5
log(1− gx),

as a logical consequence

Q =
(1− f x)

√
5+1

2
√

5 (1− gx)
√

5−1
2
√

5
√

x
,

which value vanish in two case, first for

x =
1
f
=

2
1 +
√

5
=

√
5− 1
2

,

second for

x =
1
g
= −1 +

√
5

2
;

but no matter which one we use, matters reduce to the same.

§39 But from this value we will have

A =
∫ Qdx

1− x− xx
and B =

∫ Qxdx
1− x− xx

,

whence one further deduces

s = (α + a)
A
B

=
A
B

;

hence the sum of the propounded continued fraction will be 1 + B
A . But hence

nothing more can be concluded because of the non only irrational but even,
because of the surdic exponents, transcendental formulas.
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EXAMPLE 4

§40 Let this continued fraction be propounded

b +
1 · 1

b +
2 · 2

b +
3 · 3

b +
4 · 4

b + etc.
where β = 0, b = 0.

Now let us consider this form

s = b +
2 · 2

b +
3 · 3

b + etc.

having found which the value in question will be = b + 1
s . Therefore, we will

have γ + c = 2, 2γ + c = 3 and hence γ = 1 and hence c = 1, further it will
be α = γ = 1, a = 0 and c = 1. Therefore, we hence calculate

dQ
Q

= −dx(bx + xx)
x(1− xx)

= −dx(b + x)
1− xx

and hence

log Q = − b
2

log
1 + x
1− x

+
1
2

log(1− xx)

and thus,

Q =
(1− x)

b
2
√

1− xx

(1 + x)
b
2

=
(1− x)

b+1
2

(1 + x)
b−1

2
,

which quantity obviously vanishes for x = 1. Therefore, hence it will be

A =
∫ Qdx

1− xx
=
∫

(1− x)
b+1

2 dx

(1 + x)
b−1

2 (1− xx)
=
∫

(1− x)
b−1

2 dx

(1 + x)
b+1

2

and
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B =
∫ x(1− x)

b−1
2 dx

(1 + x)
b+1

2
,

but then it will be s = (α + a) A
B = A

B and hence the sum in question b + B
A .

§41 Let us now go through the principal cases and first let b = 1 and it will
be

A =
∫ dx

1 + x
= log(1+ x) = log 2 and B =

∫ xdx
1 + x

= x−
∫ dx

1 + x
= 1− log 2

and hence b + B
A = 1

log 2 ; therefore, hence this summation will arise

1
log 2

= 1 +
1 · 1

1 +
2 · 2

1 +
3 · 3

1 + etc.

§42 Now let b = 2 and it will be

A =
∫ dx

√
1− x

(1 + x)
3
2

and B =
∫ xdx

√
1− x

(1 + x)
3
2

.

To render these formulas rational, let us set
√

1− x√
1 + x

= z

and it will be x = 1−zz
1+zz , whence z = 1 and z = 0 correspond to the limits of

integration x = 0 and x = 1; but then it will be

1 + x =
2

1 + zz
and dx = − 4zdz

(1 + zz)2

and hence one concludes

A = −2
∫ zzdz

1 + zz
= −2z + 2 arctan z = 2− π

2
,

further,
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B = −2
∫ zzdz

(1 + zz)2 + 2
∫ z4dz

(1 + zz)2 .

Therefore, by the reductions shown above (§ 35), if we permute the limits of
integration here, of course, that we have

B = +
∫ zzdz

(1 + zz)2 − 2
∫ z4dz

(1 + zz)2 ,

it will be

B = 2
(

π

8
− 1

4

)
− 2

(
5
4
− 3π

8

)
= π − 3,

whence this summation follows

2
4− π

= 2 +
1 · 1

2 +
2 · 2

2 +
3 · 3

2 +
4 · 4

2 + etc.
which is as simple as the Brounckerian continued fraction.

§43 If we put b = 0, the continued fraction goes over into the following
continuous product

1 · 1
2 · 2 ·

3 · 3
4 · 4 ·

5 · 5
6 · 6 ·

7 · 7
8 · 8 · etc.;

but in this case

A =
∫ dx√

1− xx
and B =

∫ xdx√
1− xx

= 1,

whence the value of this product is deduced to be 2
π , which agrees extra-

ordinarily with already known results, since this product is the Wallisian
progression, of course.
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EXAMPLE 5

§44 Let this continued fraction be propounded, where β = 0, b = b and the
numerators are the triangular numbers,

b +
1

b +
3

b +
6

b +
10

b + etc.
Having omitted the first term let us set

s = b +
3

b +
6

b + etc.
and first represent the numerations by products this way

3 = 2 · 3
2

, 6 = 3 · 4
2

, 10 = 4 · 5
2

,

the first of which must be compared with the formulas γ + c, 2γ + c, 3γ + c,
the latter on the other hand must be compared with the formulas 2α + a,
3α + a, 4α + a, and it will be γ = 1, c = 1, α = 1

2 , a = 1
2 , whence it will be

dQ
Q

=
dx
( 1

2 − bx− xx
)

x
( 1

2 − xx
) =

dx(1− 2bx− 2xx)
x(1− 2xx)

or

dQ
Q

=
dx
x
− 2bdx

1− 2xx
,

whose integral is

log Q = log x− b√
2

log
1 + x

√
2

1− x
√

2
,

therefore,

Q =
x(1− x

√
2)

b√
2

(1 + x
√

2)
b√
2

,
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which formula vanishes in the case x = 1√
2
. Therefore, hence it will be

dv =
2x(1− x

√
2)

b√
2 dx

(1− 2xx)(1 + x
√

2)
b√
2

.

Let b√
2
= λ and it will be

A = 2
∫ x(1− x

√
2)λdx

(1− 2xx)(1 + x
√

2)λ
= 2

∫ x(1− x
√

2)λ−1dx
(1 + x

√
2)λ+1

and

B = 2
∫ xx(1− x

√
2)λ−1dx

(1 + x
√

2)λ+1
,

having put x = 1√
2

after the integration; but then s = A
B and hence the value

of the propounded fraction is = b + B
A .

§45 Therefore, these values can only be assigned in a convenient manner, if
λ = b√

2
was a rational number. Therefore, let b =

√
2 or λ = 1 and it will be

A = 2
∫ xdx

(1 + x
√

2)2
and B = 2

∫ xxdx
(1 + x

√
2)2

.

Hence by integration one concludes

A = log(1 + x
√

2)− x
√

2
1 + x

√
2

and hence for x
√

2 = 1 it will be A = log 2− 1
2 ; but then one finds

B =
3

2
√

2
−
√

2 · log 2,

whence, because of b =
√

2 it will be b + B
A = 1√

2(2 log 2−1)
, whence this

summation follows

1√
2(2 log 2− 1)

=
√

2 +
1

√
2 +

3
√

2 +
6

√
2 + etc.
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§46 But the continued fractions, to which we are mostly led by numerical
calculations, usually have a form of this kind

a +
1

b +
1

c +
1

d +
1

e + etc.
where all numerators are 1, the denominators a, b, c, d, e etc. on the other
hand are integer numbers. But by means of our method one easily finds the
value of such formulas, even if the numbers a, b, c, d, e constitute an arithmetic
progression, what we want to show in the following example.

EXAMPLE

§47 Let this continued fraction be propounded

β + b +
1

2β + b +
1

3β + b +
1

4β + b +
1

5β + b + etc.

where α = 0, β = 0, a = 1, c = 1.

Hence

dQ
Q

= −dx(1− bx− xx)
βxx

,

whence

log Q =
1

βx
+

b
β

log x +
x
β

and Q = e
1+xx

βx x
b
β ,

which expression cannot vanish in any case, even though it is multiplied by
xn, if β was a positive number, of course. But if negative numbers are taken

for β, say β = −m, then the value Q = x
−b
m e

−(1+xx)
mx obviously vanishes, so for

x = 0 as for x = ∞. But hence
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dv =
x
−b
m e

−1−xx
mx dx

mxx
,

whence we will have

A =
1
m

∫ dx

x2+ b
m e

1+xx
mx

and B =
1
m

∫ dx

x1+ b
m e

1+xx
mx

.

Having found these values the formula will express the sum of this continued
fraction

−m + b +
1

−2m + b +
1

−3m + b +
1

−4m + b +
1

−5m + b + etc.

whence that formula taken negatively, i.e. − A
B , will express the value of this

continued fraction

m− b +
1

2m− b +
1

3m− b +
1

4m− b + etc.
which could therefore be assigned, if just the integral formulas A and B could
by found and be extended from the limit x = 0 to x = ∞. But these formulas
are of such a nature that their integration cannot be expressed in terms of
familiar quantities by any means, which is still no obstruction that the fraction
A
B can involve sufficiently known values, even though we cannot assign them
by any means yet.

§48 But concerning such formulas, I discovered the following two, whose
values can be exhibited conveniently:

n +
1

3n +
1

5n +
1

7n +
1

9n + etc.

=
e

2
n + 1

e
2
n − 1
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and

n−
1

3n−
1

5n−
1

7n−
1

9n− etc.

= cot
1
n

The first of these continued fractions compared to the formulas of the last
example yields m− b = n, 2m− b = 3n and hence m = 2n and b = n, whence

A =
1

2n

∫ dx

x
5
2 e

1+xx
2nx

and B =
1

2n

∫ dx

x
3
2 e

1+xx
2nx

,

whence we already learn, if these two formulas are integrated from the limit
x = 0 to the limit x = ∞, that it will then be

A
B

=
1 + e

2
n

1− e
2
n

,

although there is no other analytical way to prove this agreement.
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